Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Mei Li, Li-Ping Du, Jun Yang and Shu-Sheng Zhang*

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.158$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(3-Methyl-2-nitrophenyl)-1 H-benzimidazole

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$, the dihedral angle between the benzimidazole group and the other benzene ring is $39.8(1)^{\circ}$. The molecules are linked into chains along the c axis by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

We have reported the structure of 2-(2-nitrophenyl)- 1 H benzimidazole, (II) (Li et al., 2005). In order to investigate the effect of the substituent on the molecular conformation, the title compound, (I), was synthesized from the reaction of o diaminobenzene and 3-methyl-2-nitrobenzoyl chloride.

(I)

All bond lengths and angles in (I) show normal values (Allen et al., 1987) and are in good agreement with those in (II). The benzimidazole group is essentially planar, with a dihedral angle of $1.0(1)^{\circ}$ between the planes of the benzene ring and its fused imidazole ring. The benzimidazole group makes a dihedral angle of $39.8(1)^{\circ}$ with the $\mathrm{C} 8-\mathrm{C} 13$ benzene ring. There is an intramolecular hydrogen bond, viz. C14$\mathrm{H} 14 A \cdots \mathrm{O} 1$, forming a six-membered ring. In the crystal structure, molecules are linked into chains along the c axis (Fig. 2) by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions (Table 2). The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2).

Figure 1
The structure of compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 4 January 2006
Accepted 6 January 2006

Figure 2
A view down the a axis of (I), showing the chains. Hydrogen bonds are indicated by dashed lines.

Experimental

A solution of 3-methyl-2-nitrobenzoyl chloride ($4.0 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was added dropwise over 2 h to a solution of o diaminobenzene $(2.2 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.6 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{ml})$. After the addition was complete, the reaction mixture was stirred at 273 K for 1 h and at room temperature for 3 h . The volatiles were removed in vacuo to give an off-white solid. The solid was refluxed in glacial $\mathrm{AcOH}(50 \mathrm{ml})$ in the presence of $\mathrm{AcONa}(1.6 \mathrm{~g}$, 20 mmol) for 15 h . The resulting brown oil was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic extracts were evaporated in vacuo to give a yellow solid. Single crystals were obtained from a tetrahydrofuran solution over a period of one week.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \\
& M_{r}=253.26 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.755(1) \AA \\
& b=17.229(2) \AA \\
& c=9.7792(12) \AA \\
& \beta=105.598(2)^{\circ} \\
& V=1258.5(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.337 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1276 \\
& \quad \text { reflections } \\
& \theta=2.5-22.4^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.37 \times 0.13 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART 1000 CCD area-	2464 independent reflections
detector diffractometer	1705 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.031$
Absorption correction: multi-scan	$\theta_{\max }=26.1^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-4 \rightarrow 9$
$T_{\min }=0.967, T_{\max }=0.995$	$k=-20 \rightarrow 21$
6830 measured reflections	$l=-11 \rightarrow 12$

Siemens SMART 1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6830 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0729 P)^{2}\right. \\
& \quad+0.2947 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }= \\
& -0.18 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.158$
$S=1.03$
2464 reflections
172 parameters
H -atom parameters constrained

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1-\mathrm{C} 7$	$1.317(3)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.373(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.392(3)$	$\mathrm{N} 3-\mathrm{C} 13$	$1.468(3)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.352(3)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.86	2.09	$2.850(3)$	146
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 1$	0.96	2.48	$3.112(4)$	123
$\mathrm{C} 14-\mathrm{H} 14 C \cdots C g 2^{\mathrm{ii}}$	0.96	2.74	3.536	141

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $-x, y+\frac{1}{2},-z+\frac{3}{2}$. $C g 2$ denotes the centroid of the C1-C6 benzene ring

After their location in a difference Fourier map, all H atoms were positioned geometrically ($\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {iso }}(\mathrm{C}, N)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Project of Educational Administration of Shandong Province (No. J04B12) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.

Li, X.-M., Du, L.-P., Li, Y. \& Zhang, S.-S. (2005). Acta Cryst. E61, o1902o1903.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

